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1 Introduction 
The electronic spectra of atoms are known to consist of single lines, each 
corresponding to the single transition between two electronic states1 The 
electronic spectra of molecules, on the other hand, are usually seen as broad 
regions of absorption with more or less detailed structure. However, recent 
technological advances have led to the observation of much more detail in these 
broad regions. In general, each of these regions of absorption corresponds to one, 
or possibly a superposition of two or more electronic transitions. Molecular 
electronic transitions cover rather broad areas, because electronic excitation is 
accompanied by changes in vibrational and rotational energy which are not 
present in single atoms. The increase of interest in medium- to high-resolution 
spectroscopy makes worthwhile a summary of what is well known2 about the 
distribution of intensity among these various vibrational structures in an electronic 
transition. Most of the treatments readily available are rather specific to special 
cases or to specific small molecules. We have chosen here to outline the theory of 
the intensity distribution among the different vibronic components of electronic 
transitions, allowed or symmetry forbidden, with special attention to absorption. 
Thus, we have not examined fluorescence, or, more generally, ‘the fate of the 
excited state’,3 in any detail; also, we have omitted any reference to the rotational 
fine structure which further subdivides the vibronic bands and can be very useful 
in the interpretation of electronic spectra. 

We must first describe a molecular state involving both electronic and nuclear 
motion. We will assume that we can apply the well-known Born-Oppenheimer 
(BO) approximation,4 in which one separates the motion of the electrons and of 
the nuclei. Therefore, we will write the total wavefunction as the product (l), 

where #I(e,  q), the electronic wavefunction, depends explicitly on the co-ordinates 
of the electrons, represented by e, and parametrically on the co-ordinates of the 
nuclei, represented by q :  Le., is different for each set q. It is given as a solution 
of the electronic Schrodinger equation of the molecule [equation (2)]; 

G. Herzberg, ‘Atomic Spectra and Atomic Structure’, Dover Publications, New York, 1944. 
G. Herzberg, ‘Electronic Spectra of Polyatomic Molecules’, Van Nostrand Reinhold Co., 
New York, 1966, Chapter 2. 
M. Orchin and H. H. Jaffk, ‘Symmetry, Orbitals, and Spectra’, Wiley Interscience, New York, 
1971, Chapter 11.  
F. L Pilar, ‘Elementary Quantum Chemistry’, McGraw-Hill, New York, 1968, p. 414. 
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m e ,  4)#I@,  4) = EI(d$I(e, 4) (2) 
X / ( q )  is the vibrational wavefunction, solution of the nuclear equation (3), 

which is the Schrodinger equation for a set of nuclei a moving in a potential 
field V,(q). We see that a different nuclear equation holds for each different 
electronic state I,  which is the reason why the vibrational (or nuclear) wave- 
functions have to be specified by the two quantum numbers Z and ,L The set 
( I , )  defines a vibronic state, of energy EIF. 
VI(q) has as many dimensions as there are vibrational degrees of freedom in 

the molecule (3N - 6 for a non-linear molecule, 3N - 5 for a linear molecule, 
if N is the number of atoms of the molecule). The BO approximation is only 
valid if the state I is well separated from all the other states: otherwise a strong 
coupling occurs between diferent electronic states and the nuclear motions 
(Jahn-Teller and Renner effects5); throughout this review we shall assume the 
states with which we deal to be sufficiently well separated so that such couplings 
can be ignored. 

Let us now consider an one-electron transition between two electronic states 
I and F. A priori there is nothing to indicate that the electron cannot jump from 
any initial vibronic state I p  to any final vibronic state Fv, so that the spectrum 
corresponding to the electronic transition F t  I could be composed of an infinity 
of lines (some of which might actually be superimposed). In this review we shall 
attempt to show qualitatively how the intensity of the absorption (or emission) 
of light may be distributed among these lines, or bands (because of the rotational 
structure, each line is in fact a band consisting of many lines and will be referred 
to as a vibronic band). First let us recall how we can determine theoretically the 
intensity of an electronic transition. Virtually all such transitions known from 
observation are electronic dipole transitions, and for the sake of simplicity we 
restrict ourselves to this case although the discussion can be extended to magnetic 
dipole and electric quadrupole transitions. 

The intensity of the transition Fv t I p  may be expressed through the oscillator 
strength (4) where IdEIp,Fvl is the difference in energy between the two vibronic 

(4) 
-+ 
ru give the position 

( 5 )  

of electron i and nucleus 0, respectively, and 2, the charge of nucleus 0. The 
difference dE,,,,, can be expressed as the sum of an electronic difference d E I F  

G. W. King, 'Spectroscopy and Molecular Structure', Holt, Rinehart, and Winston, New 
York, 1965, pp. 410-418. 
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(for example between the energies of the states I and F at their respective 
equilibrium positions) and of a vibrational energy dEpv, [equation (ti)]. 

AEI,,F" = AEIF + AEPV (6) 

We shall see that usually the most intense vibronic bands arise from transitions 
between vibronic states having vibrational quantum numbers ,u and Y which are 
not very different: taking into account that a quantum of vibrational energy is 
much smaller than one of electronic energy, we can neglect dEpy in equation (6)  
and write 

f K  lAEZFl I G Z 8 l 2  

For two definite electronic states I and F the intensity distribution thus 

depends only on ]MI$yI . Using the product form for t h e s ,  equation (l), we 
obtain equation (7). The second term on the right of this equation contains the 

-+ 

3 

+ 
operator cZ,r,, which depends only on the nuclear co-ordinates ; consequently, 

we can integrate first with respect to the electronic co-ordinates. $I(e,q) and 
$d,e,q) are orthogonal at any q since they are different solutions of the same 
electronic Schrodinger equation, and thus the second term vanishes. Accordingly, 
we have equations (8) and (9). The latter can be rewritten as equation (lo), 

0 

3 

where the electronic transition moment M&) is given by equation (11) and 

M Z F ( q )  = J $Z(e,q)zra#F(e,q) de (1 1) 
i 

depends only parametrically on the nuclear configuration q.  
Let us now consider all the transitions from the initial state I ,  to the various 

vibrational levels v of the final electronic state F. One can easily derive equation 
(12) by use of the so-called 'closure relation'.6 This equation means that the 
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total intensity of all the transitions Fu c Zp depends only on X f ( q )  and not on 
the actual form of the vibrational wavefunctions of the final state F. However, 
this total intensity still depends on the form of the potential surface VF through 
+ 

M I F ( 4 .  

2 Harmonic and Condon Approximations 

Harmonic Approximation.-To try to gain some insight into the intensity distribu- 
tion we must now introduce some approximation. A priori we do not have any 
idea of the form of the X ,  which depend on the form of the potential surfaces; 
our first approximation will thus concern the shapes of V, and VF. 

Let us consider the potential surface V, as an example. If t, are the Cartesian 
displacement co-ordinates of the nuclei in a local axis system centred on the 
nuclei, we can expand V, around the equilibrium geometry of the state I as a 
series (13). This series contains no linear terms because we assume the state Z 

to be stable, i.e., ( a V , / a f j ) ~  = 0 for allj. We now introduce the assumption that 
the potential surface is harmonic, i.e. that all terms in equation (13) above 
second order may be neglected; thus 

VI = C'aijtctj 
i./ 

With this assumption, it is always possible to find a transformation which allows 
us to transform the ti into a new set of co-ordinates Q, such that VI can be 
expressed as equation (14). In other words, the cross-terms are eliminated from 

the expression for V,. In these co-ordinates, the nuclear Schrodinger equation 
may be rewritten' as equation (15). Then a section through V, along any Q, 

is a parabola, the concavity of which is proportional to ha. The Q, are ortho- 
normalized linear combinations of the mass-weighted Cartesian displacement 
co-ordinates mitt, and are called the 'normal co-ordinates' of the state I. 
We see that the nuclear Hamiltonian is now a sum of one-dimensional Hamil- 
tonians [equation (16)], and we thus write X f ( q )  as a product of functions 

See ref. 4, p. 417. 
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xIPa(Qa). The p on XIc now stands for the collection of pa, and the nuclear 
Schrodinger equation splits into 3N - 6 (or 3N - 5 )  equations (17). This is 

just the equation of the one-dimensional harmonic oscillator, the solutions of 
which are well known. We thus have equation (18), where pa refers to the 

vibrational quantum number and pa refers to the corresponding frequency. 
We do not need the exact expression of theXp=(Qa,&), but it must be remembered 
that these functions form an orthonormal set, i.e. 

where 6 is the Kronecker symbol. 
Analogous equations hold for the state F; XFv = n;x”~(Q,’,)(,?, where the 

normal co-ordinates Q,’ of F are distinguished by a prime from the Q, of I: 

EFv = E’V, = IfiC,(v, + +) (19) 
a a 

Note that EFv is the energy above the minimum of VF while Ere is the energy 
above the minimum of V’. The difference EFv - EIp represents d Epv of equation 
(6). 

Condon Approximation.-We now introduce a second hypothesis in order to 

simplify equation (10). As we have seen, MI&) depends on the configuration of 

the nuclei. We assume that MI&) can be approximated by a quantity indepen- 

dent of q :  k f I F ( ( I )  X MIF(0), where MIF(0) is the electronic transition moment 

approximation’. Then 

--* 

--f 

--+ --t -+ 

Bf %hE SqU%b~UR3 nWk3 EOI&~U3PfiOR 0 Of $?C!E 3$P$EI. Thk JS EP%d $hE ‘cCEdO3l 

3 Franck-Condon Factors and Vibrational Intensities in Allowed Transitions 
+ 

Next we assume that MIF(0) 
tions; the case of forbidden 
approximation the intensity 
on the quantities 

# 0, i.e. we consider only allowed electronic transi- 
transitions will be treated later. With the Condon 
distribution for allowed transitions depends only 
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Introducing the Condon approximation in equation (12) leads 
4 r 

where the relationship (22) holds. At this point we have reduced the problem of 

xspv2 = 2cpv = 1 (22) 
V V 

the intensity distribution of the vibronic components of an allowed electronic 
transition to an evaluation of the integrals Spv. The relative magnitudes of these 
depend on the relative shapes and positions of the potential surfaces VI and V,, 
and we can now investigate the different possible situations. In any case, we 
notice that because of our harmonic hypothesis, sections of V, and V, by 
vertical planes (assuming the energy axis to be vertical) are parabolas. 

The simplest situation arises when not only the normal co-ordinates Q, and 
Q,' of initial and final states are the same, but also the associated ha [LJ equation 
(14)] are the same. This implies that the force constants for the various vibraions 
do not change upon excitation, and that the potential surfaces V' and V, are 
identical, except for displacement along the energy axis. This case is illustrated in 
Figure l(a) where V, and V, are shown for a hypothetical case involving only two 
normal co-ordinates. 

In this situation (Case 1) Cpv can be factored into 3N - 6 components, 
equation (23), one for each normal co-ordinate. The CPava are called the Franck- 

cpv = naCpava = n a s p a v 2  (23) 

Condon factors. It follows that the vibrational Schrodinger equations, and 
consequently the vibrational eigenvalues and eigenfunctions, are identical for the 
states I and F. As a consequence, the x v a  and x p a  are functions belonging to the 
same orthonormal set, Spa.= = Spava, and the only vibronic components of the 
transition F c  I having non-zero intensity are those in which the sets of vibra- 
tional quantum numbers (p and v) are identical. Since the vibrational energy 
spacings are also identical, the spectrum will consist of a single vibronic band, 
which represents the superposition of all the degenerate transitions Fp f- Ip. 

A more complicated situation (Case 2) exists when, although the Q, and Q,' 
are the same, one or more of the concavities ha of equation (13) differ between 
states I and F. This case is illustrated (again in the two-dimensional case), in 
Figure l(b). Again, equation (23) holds. In this case the vibrational Schrodinger 
equations, although of equal form, are no longer identical, and different eigen- 
values Epa and Eva' result. Consequently, the overlap integrals Spava # 8&va and 
new vibronic bands become allowed. However, a selection rule arises from the 
nature of the vibrational wavefunctions in the harmonic approximation used 
here. These functions xFa(Q,,h,), are even or odd functions of Q,, depending on 
whether ,u, is even or odd, and similarly for xva(Q,',A,'). Consequently Spava 
vanishes unless pa and va are of the same parity, and we obtain the selection rule 
(24). 
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Figure 1 The relative shapes and orientations of potential surfaces (two-dimensional) for 
pairs of electronic states, (a) Case I, (b) Case I T ,  (c) Case 111, (d) Case IV 

dv, = pa - va = 0, + 2  

The electronic spectrum of the molecule in the initial state Ip should now be 
composed of various progressions of bands, each progression corresponding to a 
vibration 01 for which the surfaces are distorted (a single band corresponds to all 
the other Q, for which no distortion occurs). At elevated temperatures, where a 
number of vibronic states Ip are populated, a separate progression should appear 
for each significantly populated state. Since the spacing of vibrational levels is not 
the same in the two states, the progressions do not coincide but are offset from 
one another by Pa - 

A study of the algebraic form of the Franck-Condon factors for diatomic 

(24) 

[in units of ti: cf. equations (18) and (19)]. 
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molecules* shows that the band for which Av, = 0 is by far the most intense 
and then the intensity decreases sharply with increasing Id v,l. In absorption at 
room temperature or below, most of the molecules are in the vibrational ground 
state (all pa = 0) so that the most intense bands will result from transitions 
F,, c l o  (cold bands; Fv t lp for some pa > 0 give the so-called hot bands). 
It can be shown that the Franck-Condon factor COO for the 0-0 band is given by 
COO = 2,/pz/(p, + Pa). Even if v, = 3 pa, which corresponds to a strong 
distortion, COO = 0.94, and the 0-0 band is most prominent among the cold 
bands. 

In summary we can say that the distortion of the potential surfaces has a 
small effect on the spectrum, and generally speaking this spectrum will show the 
dv = 0 bands very prominently and no clear progressions. 

In a third situation [Case 3 ,  Figure l(c)] the potential surfaces are displaced 
relative to one another along one (or more) of the normal co-ordinates Q, 
(as well as along the energy axis) by an amount d Q,. Cpy is still the product of 
3N - 6 CPKyK [equation (23)], so that we have to examine CpKv= for two displaced 
harmonic oscillators. There is no distortion, so that CPavK = CyKpa; moreover 
whenp, = 0, Coy, takes the simple form (25), where y, the displacement parameter 

coy, = yYae-Y/va ! (25) 

y = .J&AQ,2/2A (26) 

is given by (26). The main feature is that all dv, are now allowed. The ratio of 

two successive Franck-Condon factors is given by (27). Since y can take any 

positive value, we see that the maximum value of CPKy, does not necessarily 
occur at COO: it will be so only if y .c 1. For y = 1, COI = COO, and for y = 2, 
C O Z  = COl = 2coo. 

For any normal co-ordinate Q,, for which the minimum of VF is displaced 
relative to the minimum of VI, we then expect to see a progression of vibronic 
components; usually the progressions are not very long, since the Coy, decrease 
rapidly for large values of v,. The maximum intensity in such a progression then 
occurs usually not at v, = 0, but at some relatively small value of this quantum 
number. The appearance of these progressions is the rationale for the statement 
frequently found in the literature that those vibrations appear prominently in the 
vibronic spectrum which transform the molecule from the equilibrium geometry 
of its ground state to that of the excited state. 

In actual molecules, of course, we usually do not encounter any of these first 
three limiting cases in pure form. Thus the deformations of Case 2 usually 
accompany the distortions of Case 3 ,  and we have to deal with Case 4 where we 
find both distortion and displacement along one (or more) of the normal co- 

C. Manneback, Physica, 1951, 17, 1001. 
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ordinates [Figure l(d)]: equation (23) is still valid and it is possible to evaluate 

As indicated above, the deformations of the potential energy surface usually 
have relatively little effect on the Franck-Condon factors, so that Case 4 is 
very similar to Case 3. Often, the displacement of VF relative to Vr occurs along 
several normal co-ordinates. Since the total Franck-Condon factor CPv is the 
product of individual CPava for individual vibrations, the effects are readily 
predicted, and mixed progressions (corresponding to combination bands in the 
i.r.) between the displacing normal co-ordinates are expected to show weakly in 
absorption or emission. 

In all the above situations of Figure 1, we have assumed that the normal 
co-ordinates remain unchanged upon excitation, although their origin may have 
been displaced. To provide a general treatment, we must consider changes in 
going from the Q, to the Q,‘. Since the vibrational degrees of freedom are the 
same in the ground and excited states, it is always possible to express the normal 
co-ordinates Q,’ as linear combinations of the Q,: 

the ctava. 

Q,’ = CA,BQp + B, = 1,2,. . . ,3N - 6 

We may now distinguish two basically different situations: if all AaB (except 
A,,) vanish, the co-ordinate axes in the two states are parallel. If any Aa8 
(a # p) is non-vanishing, some Q,’ axes are rotated with respect to the Q, axes; 
this situation is referred to in the literature as the Duschinsky ef fe~t .~  The 
difference between these two situations is illustrated in Figure 2 where again we 
suppose that there are only two normal co-ordinates (a, /i? = 1, 2). We note that 
the sections of V, and V, by horizontal planes are ellipses with principal axes 
directed along the axes of the normal co-ordinates; such ellipses are represented 
in Figure 2. In Figure 2(a), with no Duschinsky effect, Ql‘ = QI + B1 and 
Q2’ = Q2 + B2; ,GI = fil but i i 2  # v”. This corresponds to Case 3 of the previous 
discussion for Ql, and to Case 4 for Q2. On the other hand, Figure 2(b) represents 
the same surfaces, but in addition to displacements and distortions, there is a 
rotation of Ql’ and Q2‘ with respect to Ql and Q2. 

The factorization of equation (23) is not possible when a Duschinsky effect 
is present, and the calculation of the intensity distribution requires the evaluation 
of more involved integrals than simply the overlap 

between two displaced and/or distorted harmonic oscillators. 
A Duschinsky effect is probably present in many actual spectra and is likely 

to alter significantly the vibrational intensities if the rotation of the normal 
co-ordinates is important. Although it has been studied in some particular 

F. Duschinsky, Acta Physiochim. U.R.S.S., 1937, 1, 551. 
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E 

(a> (b) 

Figure 2 Potential surfaces illustrating the Duschinsky eflect 

cases,lOJ1 it has not yet been fully investigated; apparently most spectra can be 
understood with sufficient accuracy without taking it into account. 

We have thus examined the different cases and seen why more than one band 
appears in the electronic spectra of molecules; observation of only a single band 
would correspond to the ideal Case 1 of identical potential surfaces, a case which 
is virtually never encountered. 

lo  B. Sharf and B. Honig, Chem. Phys. Letters, 1970, 7, 132. 
l1 G. J. Small, J. Chem. Phys., 1971, 54, 3300. 
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The above discussion presupposed a knowledge of Vr and V,. Unfortunately, 
theoretical calculation of potential surfaces, even for ground states, although in 
principle feasible, is not yet a practical reality. While information about ground- 
state potential energy functions is readily available from i.r. and Raman spectro- 
scopy, and other physical measurements, the vibronic structure of electronic 
transitions is about the only experimental avenue to excited-state potential 
functions, 

We are now in a position to apply the above arguments to obtain information 
about the relation of VF to Vz from the vibronic structure of spectra. For example, 
if no progressions are observed, implying that all bands correspond to dv = 0, 
this strongly suggests that Vr and V, are practically not displaced with respect to 
each other. On the other hand, the appearance of progressions in one or several 
frequencies shows that the surfaces are displaced along the corresponding 
normal co-ordinates. The intensity distribution depends on the extent of the 
displacements. If one knows the normal co-ordinates, one can calculate approxi- 
mately the displacements by fitting the bands with calculated Franck-Condon 
factors. In absorption at low temperatures we expect, for each displaced co- 
ordinate Q,’, a progression of band with maximum intensity generally occurring 
at some dv, > 0; i.e. the most intense band generally is not the 0-0 band (all 
the p, and all the va equal to zero). At higher temperatures, several new pro- 
gressions of weaker intensity may appear, their intensity increasing with temper- 
ature (hot bands). At sufficiently high temperatures, the cold bands may even 
noticeably lose intensity. The spacing of the successive terms is a measure for the 
vibrational frequencies va of the excited state in absorption andpa of the ground 
state in emission. 

Such simple rules form a useful tool for the analysis of experimental spectra 
and the study of the potential surfaces of excited states. Symmetry arguments 
can also serve as a powerful tool in the analysis of experimental spectra and the 
study of excited states. The reader is referred to standard texts for the use of 
group theory in spectroscopy.12 Let it suffice here to say that the transition 
Fv +- Ip can have non-vanishing intensity only if xzp(q)xFv(q) [cf. equation (20)) 
is invariant under all symmetry operations of the molecule; in other words, if 
the product of the X is totally symmetric. This requirement immediately elimin- 
ates many vibronic transitions but never the 0-0 band: the 0-0 band is always 
present in an allowed transition. 

It is now time to look back to our two basic approximations, the assumption 
of a harmonic potential surface and the Condon approximation. In particular, 
the discussion of the Condon approximation will lead us to the consideration of 
symmetry-forbidden electronic transitions. 

Harmonic Approximation.-Potential surfaces are not in reality harmonic except 
in a small region around the equilibrium geometry. The anharrnonicity becomes 
important for high vibrational excited states, and these in turn are important 

l* See for example: M. Orchin and H. H. Jaff6, ‘Symmetry in Chemistry’, Wiley, New York, 
1967, Chapter 5,  section 5.3. 
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when the potential surfaces are largely displaced; in such rather rare cases 
dramatic changes in the spectrum can occur for which the above discussion is 
totally invalid. Such a case is, e.g., the phenomenon of dissociation upon excita- 
tion.l3 In a rigorous treatment it is to be noted that, with the introduction of 
higher-order terms in Vz (and/or V,), the nuclear Schrodinger equation cannot be 
factored into 3N - 6 unidimensional ones and consequently the normal co- 
ordinates do not exist as such. However, for small translations of the potential 
surfaces, only those levels appear in the spectrum for which pa and v, are small, 
and therefore anharmonicity will have little effect ; under these circumstances 
anharmonicity can be treated as a perturbation. 

+ 
Condon Approximation.-So far we have assumed that M,,(y) is approximately 

constant and we have replaced it by Mz,(0), where 0 stands for the equilibrium 

geometry of I. In a better approximation we can expand MIF(q) in a series around 
0 [equation (28)]. Substitution in equation (10) leads to equation (29). 

3 

+ 

Q,+ . . . .  
0 

4 Perturbations due to Vibronic Coupling 

The derivatives M, = [aM,fl(q)/aQ,]~ do not generally all vanish and hence 
the second term on the right of equation (29) generally makes some contribution 

to MzFpv. This second term appears because the electronic wavefunctions vary 
with q, and will be referred to as the 'vibronic coupling' term or simply 'perturb- 

ing' term; in turn we call MIF(0)Spv the 'Condon term'. Again group theory 
provides rigorous symmetry selection rules for the perturbing term in symmetrical 
molecules, and an important remark can be made similar to the one we have 
made for the Condon term: for the perturbing term to be non-zero, XzpQ,X,' 
must be totally symmetric. Now if Q, is totally symmetric, this means that 
XI"XF' must be totally symmetric; in other words if Q, is totally symmetric, 
the same vibronic transitions are allowed for the Condon term and the perturbing 
term. On the other hand, if Q, is not totally symmetric, XzpXF" must not be 
totally symmetric: in other words, if Q, is not totally symmetric the vibronic 
transitions allowed for the Condon terms art: forbidden for the perturbing term, 
and some of the vibronic transitions forbidden for the Condon term can be made 
allowed by the perturbing term. 

We will keep this remark in mind in looking at the possible effects of the 

3 + 

+ 

-+ 

l3 See ref. 2, p. 445. 
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vibronic coupling terms in electronic transitions. First we rewrite equation (29) 
in a more convenient way as equation (30), assuming as before that the harmonic 
approximation is valid and that there is no Duschinsky effect. It can be shownl* 

that the recurrence relationship (31) holds for the harmonic functions xva. 

With the use of this relation, equation (29) then takes the form (32), where 

a and b are constants; in equation (32) we have the same type of integrals S as 
in our previous discussion of the Franck-Condon factors. 

Perturbing terms due to Q, which are not totally symmetric give rise to bands 
which are forbidden in the Condon approximation. In the cases of potential 
surfaces illustrated by Figures l(a) and (b) (Cases 1 and 2), the coefficients of 

Ma are very small unless ,u, = v, k 1 ; in these cases no progressions in 01 will 
be observed, but only the 0 - 1 bands in the cold, and 1 +- 0 and 1 - 2 as hot 
bands. Thus we may expect progressions in any vibration /3 for which V, and V, 
are strongly displaced relative to one another. In the cases of Figures l(c) and (d) 
(Cases 3 and 4) we may expect progressions in a. The effect of these perturbing 
terms due to non-totally symmetric Q, differ depending on whether the electronic 

transition is allowed [MIF(0) # 01 or symmetry forbidden [MIF(0) = 01. In the 
allowed case, the perturbations cause new weak bands to appear in addition to 
the much more intense Condon term allowed bands. In the forbidden case these 
perturbation bands are the only bands appearing in the spectrum, as will become 
apparent from the following argument: a totally symmetric distortion, by 
definition, does not change the symmetry of the molecule or of the electronic 

state of this molecule; consequently, if MIF(0) = 0 for symmetry reasons 

MIF(Q,) vanishes for any value of Q, if Q, is totally symmetric; as a result, 
vibronic coupling by totally symmetric vibrations vanishes, and only non-totally 
symmetric vibrations can bring intensity to symmetry-forbidden transitions. 

From what we have said before, we can then conclude that the vibronic bands 
that would be allowed in an allowed transition are forbidden in such a symmetry- 
forbidden transition; in particular, the 0-0 band is forbidden. The absence of 
the 0-0 band along with the weak intensity of the spectrum is characteristic of 
symmetry-forbidden transitions (another feature is a distinct vibrational structure 
in the spectrum, even in solution, due to the fact that in general only a few 

+ 

--+ + 

--t 

+ 

l 4  E. B. Wilson, J.  C. Decius, and P. C. Cross, 'Molecular Vibrations', McGrnw-Hill, N e w  
York, 1955, p. 38. 

177 



Vibrational Intensities in Electronic Transitions 

bands are allowed). In many molecules, there is no change of symmetry upon 
excitation, which means that V’ and V, may only be displaced along totally 
symmetric vibrations. These do not contribute to the intensity but may show up 
as progressions. On the other hand, the transitions which make the transition 
allowed generally do not show up as progressions. 

The perturbing terms due to totally symmetric vibrations contribute intensity 
in allowed transitions. The effect of such terms is not readily observable since 
the intensity they contribute is much smaller than typical Condon terms on which 
they are superimposed; thus they only result in a change of the intensities of the 
Condon term bands. It has been shown that such perturbation may be respon- 
sible for a lack of ‘mirror symmetry’ between absorption and fluorescence, even 
when such a symmetry would be expected according to the Condon approxi- 
mation.15 

5 Example of Symmetry-forbidden Transitions 
We shall conclude this elementary review with a discussion of some of the most 
prominent features of the absorption band system of benzene vapour near 
260 nm. The overall weak intensity and pronounced vibrational structure, even 
in solution, suggest a symmetry forbidden transition. From its energy it appears 
obvious that it is a 7~ -+n* transition. We shall limit ourselves to two of the 
numerous progressions exhibited by the real spectrum : the progression A which 
is by far the most intense of all, and the progression B of weaker intensity. The 
intensities of A and B have been estimated by Sponer et aZ.,16 and are presented 
in Figure 3. Both progressions are in the same vibration 18 (frequency 925 cm-l). 

A progression : x 

00 --+ 1.1 B progression : 

io-too f i o - + o i  1 0 4 0 2  io-+o3 

00-00 ( 0 - 0 )  

(38 100 cm - ) 

Figure 3 Two progressions in the absorption spectrutn of betizene vapour 

The vibronic bands are represented by ab -+ a’b’ where a and a’ are the quantum 
numbersof thevibrationa (see below) in the ground and excited states, respectively, 
l6 D. P. Craig and G. J. Small, J. Chem. Phys., 1969, 50, 3827. 
l6 H Sponer. G. Nordheim, A. L. Sklar, and E. Teller, J. Chem Phys., 1939, 7, 207. 
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and b and b’ are the corresponding quantum numbers for the vibration fl. The 
intensities of the B bands are found experimentally to increase with temperature: 
they are thus hot bands. The rather long progressions in v8 show that VI and V, 
are displaced along the corresponding normal co-ordinate Qp. The vibrations 
of the ground state I are known17 from i.r. and Raman spectra but not the 
vibrations of F, and in order to identify Qb we have to make some reasonable 
hypotheses and see whether the experimental spectrum is in agreement with 
them. We will assume that, at equilibrium, I and F have the same symmetry 
(&). Then Qs has to be totally symmetric; benzene has only two totally sym- 
metric vibrations, one involving mostly the carbon ring at 993 cm-1, the other 
involving mostly the C-H bonds at 3073 cm-l. Now a T -T* transition will 
certainly affect primarily the C-C bonds so that we can assume that Vr and 
VF are distorted and displaced along the ‘ring-breathing’ totally symmetric 
normal co-ordinate. The distortion is not significant (993 cm-1 - 925 cm-l); 
the displacement has been estimated to correspond approximately to an in- 
crease of 0.04 A in the C-C bond distances;18 this is enough to make the d vB = 
1 bands more intense than the dv, = 0 bands. 

Next, we shall try to understand the 1126 cm-1 separation between the A and 
B bands. Since the first are cold bands, and the second hot bands, the frequency 
would have to correspond to one of the vibrations of the ground state; however, 
no such vibration exists in benzene. This is another argument to assign the band 
system to a forbidden transition, which is then made allowed by some non- 
totally symmetric vibration. In this case, we have seen that the cold bands will 
correspond to a 0 - 1 transition in a and the hot bands to a 1 4 0 or 1 --+ 2 
transition in a ;  in fact, two systems of hot bands, one for 1 -+ 0 and one for 1 --t 2 
are expected to show with comparable intensities, the second being displaced 
with respect to the first toward the high frequencies by 2Ta: a more detailed analysis 
of the spectrum shows that there is another progression of hot bands similar to 
the B progression at higher frequencieP and we will then assign B to the 1 ---t 0 
transition in a. If this is so, Figure 4 shows immediately that the separation 
between the A and B bands is pa + .”,. Let us attempt to find among the vibrations 
of benzene the vibration a which can contribute the most to the intensity. An 
out-of-plane vibration will not significantly change the T wavefunctions involved 

in this T -+ T* transition, and the derivatives Ma will be small for such a vibra- 
tion. Therefore, we have to look for a among the in-plane vibrations, Examina- 
tion of the corresponding frequencies shows that the only reasonable choice for a 
is the 606 cm-l vibration (Ezs); hence va = 1126 - 606 = 520 cm-1 in the 
excited state. The frequencies of all the other in-plane non-totally symmetric 
vibrations lie above lo00 cm-l, which would lead to an estimate of less than 
150 cm-1 for Pa, and would imply a tremendous and very unlikely distortion of 
VF with respect to V.. The 606 cm-l vibration is mainly a ring vibration, the 
most likely to affect the T electrons and the intensity of the spectrum. With this 
l7 G. Varsanyi, ‘Vibrational Spectra of Benzene Derivatives’, Academic Press, New York, 

4 

1969, pp. 70-71. 
F. M. Garforth, C. K. Ingold, and H. G. Poole, J .  Chem. Soc., 1948, 406. 
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Vibrational Intensities in Electronic Transitions 
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Figure 4 Vibronic transitions from ground to excited state in benzene 

choice for a, we see that V, and V, are only slightly distorted and not displaced 
along Q,, so that there is no progression in a. The 0-0 band is of course absent, 
and, if allowed, would be situated at 38 100 cm-1 (Figure 3). 

In summary, we have given a satisfactory interpretation of the spectrum as a 
symmetry-forbidden transition and have identified the vibronic bands. We have 
at the same time gained some insight into the shape of the potential surface of 
the excited state. 
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